The Bergman kernel on weakly pseudoconvex tube domains in $\mathbf {C}^2$
نویسندگان
چکیده
منابع مشابه
Boundary Behavior of the Bergman Kernel Function on Some Pseudoconvex Domains in C "
Let il be a bounded pseudoconvex domain in C" with smooth denning function r and let zo 6 bCl be a point of finite type. We also assume that the Levi form ddr(z) of bil has (n — 2)-positive eigenvalues at z0 . Then we get a quantity which bounds from above and below the Bergman kernel function in a small constant and large constant sense.
متن کاملSubharmonicity Properties of the Bergman Kernel and Some Other Functions Associated to Pseudoconvex Domains
Let D be a pseudoconvex domain in Ckt × C n z and let φ be a plurisubharmonic function in D. For each t we consider the ndimensional slice of D, Dt = {z; (t, z) ∈ D}, let φ be the restriction of φ to Dt and denote by Kt(z, ζ) the Bergman kernel of Dt with the weight function φ. Generalizing a recent result of Maitani and Yamaguchi (corresponding to n = 1 and φ = 0) we prove that logKt(z, z) is ...
متن کاملOn Analytic Interpolation Manifolds in Boundaries of Weakly Pseudoconvex Domains
Let Ω be a bounded, weakly pseudoconvex domain in Cn, n ≥ 2, with real-analytic boundary. A real-analytic submanifold M ⊂ ∂Ω is called an analytic interpolation manifold if every real-analytic function on M extends to a function belonging to O(Ω). We provide sufficient conditions for M to be an analytic interpolation manifold. We give examples showing that neither of these conditions can be rel...
متن کاملThe Bergman Kernel and Projection on Non-smooth Worm Domains
We study the Bergman kernel and projection on the worm domains Dβ = { ζ ∈ C : Re ( ζ1e −i log |ζ2| 2) > 0, ∣∣ log |ζ2| ∣∣ < β − π 2 } and D β = { z ∈ C : ∣Im z1 − log |z2| ∣∣ < π 2 , | log |z2| | < β − π 2 } for β > π. These two domains are biholomorphically equivalent via the mapping D β ∋ (z1, z2) 7→ (e z1 , z2) ∋ Dβ . We calculate the kernels explicitly, up to an error term that can be contr...
متن کاملThe Bergman Kernel and Quadrature Domains in the Plane
A streamlined proof that the Bergman kernel associated to a quadrature domain in the plane must be algebraic will be given. A byproduct of the proof will be that the Bergman kernel is a rational function of z and one other explicit function known as the Schwarz function. Simplified proofs of several other well known facts about quadrature domains will fall out along the way. Finally, Bergman re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1999
ISSN: 0386-2194
DOI: 10.3792/pjaa.75.12